Arbitrarily Slow Rational Approximations on the Positive Real Line

Peter Borwein
University of British Columbia, Vancouver, B.C., Canada
Communicated by E. W. Cheney

Received February 1, 1977

INTRODUCTION

This paper will exhibit positive, non-decreasing, infinitely differentiable functions f with the property that the best rational approximations of degree n in the supremum norm to $1 / f$ on $[0, \infty)$ tend to zero arbitrarily slowly. Furthermore, such f can be chosen to have very general growth characteristics at infinity.

In particular, this demonstrates that the following two conjectures of Erdös and Reddy [1] are false.

1. Let $f(x)$ be any nonvanishing, infinitely differentiable and monotonic function tending to $+\infty$. Then for infinitely many n

$$
\inf _{p \in P_{n}}\|1 / f(x)-1 / p(x)\|_{[0, \infty)} \leqslant 1 / \log n
$$

where P_{n} denotes the set of polynomials of degree at most n.
2. Let $f(x)$ be any nonvanishing, infinitely differentiable and monotonic function tending to $+\infty$. Then, there exist polynomials of the form

$$
Q(x)=\sum_{i=0}^{k} a_{i} x^{n_{i}}
$$

with $n_{0}=0, n_{0}<n_{1}<n_{2}<\cdots, \sum_{i=0}^{\infty} 1 / n_{i}=\infty$, for which, for infinitely many k,

$$
\|1 / f(x)-1 / Q(x)\|_{[0, \infty)} \leqslant 1 / \log \log n_{k} .
$$

The Construction

We shall make use of the following Lemma due to Gončar [2]. Let R_{n} denote the set of rational functions which are the quotients of two polynomials each of degree at most n.

Lemma. If g is a continuous function on $[a-1, a+1], g \equiv 0$ on $[a-1, a]$ and g is nondecreasing on $[a, a+1]$, then

$$
\inf _{r \in R_{n}}\|g-r\|_{\{a-1, a+1]} \geqslant \sup _{0<h<1} \frac{g(a+h)}{1+\exp \left(\pi^{2} n / l n 1 / h\right)}
$$

Theorem. Let α_{n} be any sequence of positive numbers tending to zero monotonically. Let S_{n} be any sequence of positive numbers with $S_{n+1} \geqslant S_{n}+1$. Then there exists an f satisfying:
(1) f is infinitely differentiable and nondecreasing on $[0, \infty)$.
(2) $f(2 k)=S_{k}$ for $k=1,2, \ldots$.
(3) $\inf _{r \in R_{n}}\|1 / f(x)-r(x)\|_{[0, \infty)} \geqslant \alpha_{n}$ for all sufficiently large n.

Proof. (a) Let δ_{n} be any sequence of positive numbers with $1 \leqslant \delta_{n}$. Let $h(n)=e^{-\delta_{n}}$. Define f on $[0, \infty)$ by:

$$
\begin{array}{ll}
f(x)=S_{1}, & x \in[0,2] \\
f(x)=S_{k+1}, & x \in[2 k+h(k), 2 k+2], \quad k=1,2, \ldots \\
f(x)=Q_{k}(x), & x \in[2 k, 2 k+h(k)], \quad k=1,2, \ldots
\end{array}
$$

where Q_{k} is any increasing, infinitely deffrentiable function on [$2 k, 2 k+h(k)$] which satisfies $Q_{k}(2 k)=S_{k}, \quad Q_{k}(2 k+h(k))=S_{k+1}$ and for $n \geqslant 1$, $Q_{k}^{(n)}(2 k)=Q_{k}^{(n)}(2 k+h(k))=0$.
Parts (1) and (2) now follow from the construction. We show that, for suitably chosen δ_{n}, (3) holds.
(b) The Lemma applied to $f-S_{k}$ on $[2 k-1,2 k+1]$ with $h=h(k)$ yields

$$
\begin{aligned}
\inf _{r \in R_{n}}\|f-r\|_{[0,2 k+2]} & \geqslant \inf _{r \in \mathcal{R}_{n}}\|f-r\|_{[2 k-1,2 k+1]} \\
& \geqslant \frac{f(2 k+h(k))-S_{k}}{1+e^{\pi^{2} n / \delta_{k}}} \geqslant \frac{1}{1+e^{\pi^{2} n / \delta_{k}}} .
\end{aligned}
$$

(c) If $\delta_{k} \geqslant n$ then $\inf _{r \in R_{n}}\|1 / f-1 / r\|_{[0,2 k+2]} \geqslant T(k)$, where $T(k)=$ $1 / 3\left(1+e^{\pi^{2}}\right)\left(S_{k+1}\right)^{2}$.
Suppose on the contrary that there exists $r \in R_{n}$ with $\|1 / f-1 / r\|_{[0,2 k+2]}<$ $T(k)\left(^{*}\right)$. Then $\|r\|_{[0,2 k+2]}-\|r\|_{[0,2 k+2]}\|f\|_{[0,2 k+2]} T(k) \leqslant\|f\|_{[0,2 k+2]}$ and so

$$
\|r\|_{[0,2 k+2]} \leqslant \frac{\|f\|_{[0,2 k+2]}}{1-\|f\|_{[0,2 k+2]} T(k)} \leqslant 2\|f\|_{[0,2 k+2]},
$$

since $\|f\|_{[0,2 k+2]}=S_{k+1}$. Thus, using (b) with $\delta_{k} \geqslant n$, we have

$$
\|1 / f-1 / r\|_{[0,2 k+2]} \geqslant \frac{\|f-r\|_{[0,2 k+2]}}{\|f\|_{[0,2 k+2]}\|r\|_{[0,2 k+2]}} \geqslant \frac{1}{\left(1+e^{\pi^{2}}\right)} \cdot \frac{1}{2\left(S_{k+1}\right)^{2}}>T(k)
$$

which contradicts $\left(^{*}\right)$ and proves (c).
(d) Let $H_{k}=\left\{i: T(k) \geqslant \alpha_{i}>T(k+1)\right\}$. Pick $\delta_{k}=\max H_{k}$ ($=1$ if H_{k} is empty). Then, for sufficiently large $n, n \in H_{k}$ for some k and by (c)

$$
\inf _{r \in R_{n}}\|1 / f-r\|_{[0, \infty)} \geqslant T(k) \geqslant \alpha_{n}
$$

Remarks. (1) A similar theorem is easily proved for strictly monotone $f(x)$ by considering $f(x)+x$.
(2) Freud, et al. [3] have shown that $e^{-x^{-1 / 2}}$ can be approximated on $[0, \infty)$ by reciprocals of polynomials of degree n with an error of order $(\log n) / n$.

Acknowledgment

The author wishes to thank Dr, D. W. Boyd for many useful discussions.

References

1. P. Erdös and A. R. Reddy, Rational approximation, Advances in Math. 21 (1979), 78-109.
2. A. A. Gončar, Estimates of the growth of rational functions and some of their applications, Mat. Sb. 72, No. 114 (1967), 489-503; Math. USSR-Sb. 1 (1967), 445-456.
3. G. Freud, D. J. Newman, and A. R. Reddy, Rational approximation to $e^{-|x|}$ on the whole real line, Quart. J. Math. Oxford Ser. 28 (1977), 117-123.
