Arbitrarily Slow Rational Approximations on the Positive Real Line

PETER BORWEIN

University of British Columbia, Vancouver, B.C., Canada Communicated by E. W. Cheney Received February 1, 1977

INTRODUCTION

This paper will exhibit positive, non-decreasing, infinitely differentiable functions f with the property that the best rational approximations of degree n in the supremum norm to 1/f on $[0, \infty)$ tend to zero arbitrarily slowly. Furthermore, such f can be chosen to have very general growth characteristics at infinity.

In particular, this demonstrates that the following two conjectures of Erdös and Reddy [1] are false.

1. Let f(x) be any nonvanishing, infinitely differentiable and monotonic function tending to $+\infty$. Then for infinitely many n

$$\inf_{p\in P_n} \|1/f(x) - 1/p(x)\|_{[0,\infty)} \leq 1/\log n,$$

where P_n denotes the set of polynomials of degree at most n.

2. Let f(x) be any nonvanishing, infinitely differentiable and monotonic function tending to $+\infty$. Then, there exist polynomials of the form

$$Q(x) = \sum_{i=0}^k a_i x^{n_i}$$

with $n_0 = 0$, $n_0 < n_1 < n_2 < \cdots$, $\sum_{i=0}^{\infty} 1/n_i = \infty$, for which, for infinitely many k,

$$\|1/f(x)-1/Q(x)\|_{[0,\infty)}\leqslant 1/\log\log n_k.$$

THE CONSTRUCTION

We shall make use of the following Lemma due to Gončar [2]. Let R_n denote the set of rational functions which are the quotients of two polynomials each of degree at most n.

LEMMA. If g is a continuous function on [a - 1, a + 1], $g \equiv 0$ on [a - 1, a]and g is nondecreasing on [a, a + 1], then

$$\inf_{r \in R_n} \|g - r\|_{[a-1,a+1]} \ge \sup_{0 < h < 1} \frac{g(a+h)}{1 + \exp(\pi^2 n/\ln 1/h)}$$

THEOREM. Let α_n be any sequence of positive numbers tending to zero monotonically. Let S_n be any sequence of positive numbers with $S_{n+1} \ge S_n + 1$. Then there exists an f satisfying:

- (1) f is infinitely differentiable and nondecreasing on $[0, \infty)$.
- (2) $f(2k) = S_k$ for k = 1, 2, ...
- (3) $\inf_{r \in R_n} || 1/f(x) r(x)||_{[0,\infty)} \ge \alpha_n$ for all sufficiently large n.

Proof. (a) Let δ_n be any sequence of positive numbers with $1 \leq \delta_n$. Let $h(n) = e^{-\delta_n}$. Define f on $[0, \infty)$ by:

$$f(x) = S_1, \qquad x \in [0, 2]$$

$$f(x) = S_{k+1}, \qquad x \in [2k + h(k), 2k + 2], \quad k = 1, 2, ...$$

$$f(x) = Q_k(x), \qquad x \in [2k, 2k + h(k)], \quad k = 1, 2, ...$$

where Q_k is any increasing, infinitely definentiable function on [2k, 2k + h(k)]which satisfies $Q_k(2k) = S_k$, $Q_k(2k + h(k)) = S_{k+1}$ and for $n \ge 1$, $Q_k^{(n)}(2k) = Q_k^{(n)}(2k + h(k)) = 0$.

Parts (1) and (2) now follow from the construction. We show that, for suitably chosen δ_n , (3) holds.

(b) The Lemma applied to $f - S_k$ on [2k - 1, 2k + 1] with h = h(k) yields

$$\inf_{r \in \mathbb{R}_n} \|f - r\|_{[0,2k+2]} \ge \inf_{r \in \mathbb{R}_n} \|f - r\|_{[2k-1,2k+1]}$$
$$\ge \frac{f(2k + h(k)) - S_k}{1 + e^{\pi^2 n/\delta_k}} \ge \frac{1}{1 + e^{\pi^2 n/\delta_k}}$$

(c) If $\delta_k \ge n$ then $\inf_{r \in R_n} || 1/f - 1/r ||_{[0,2k+2]} \ge T(k)$, where $T(k) = 1/3(1 + e^{\pi^2})(S_{k+1})^2$.

Suppose on the contrary that there exists $r \in R_n$ with $|| 1/f - 1/r ||_{[0,2k+2]} < T(k)$ (*). Then $|| r ||_{[0,2k+2]} - || r ||_{[0,2k+2]} || f ||_{[0,2k+2]} T(k) \le || f ||_{[0,2k+2]}$ and so

$$\|r\|_{[0,2k+2]} \leqslant \frac{\|f\|_{[0,2k+2]}}{1-\|f\|_{[0,2k+2]} T(k)} \leqslant 2 \|f\|_{[0,2k+2]},$$

PETER BORWEIN

since $||f||_{[0,2k+2]} = S_{k+1}$. Thus, using (b) with $\delta_k \ge n$, we have

$$\|1/f - 1/r\|_{[0,2k+2]} \ge \frac{\|f - r\|_{[0,2k+2]}}{\|f\|_{[0,2k+2]} \|r\|_{[0,2k+2]}} \ge \frac{1}{(1 + e^{\pi^2})} \cdot \frac{1}{2(S_{k+1})^2} > T(k),$$

which contradicts (*) and proves (c).

(d) Let $H_k = \{i: T(k) \ge \alpha_i > T(k+1)\}$. Pick $\delta_k = \max H_k$ (= 1 if H_k is empty). Then, for sufficiently large $n, n \in H_k$ for some k and by (c)

$$\inf_{r\in R_n} \|1/f - r\|_{[0,\infty)} \ge T(k) \ge \alpha_n.$$

Remarks. (1) A similar theorem is easily proved for strictly monotone f(x) by considering f(x) + x.

(2) Freud, et al. [3] have shown that $e^{-x^{-1/2}}$ can be approximated on $[0, \infty)$ by reciprocals of polynomials of degree *n* with an error of order $(\log n)/n$.

ACKNOWLEDGMENT

The author wishes to thank Dr. D. W. Boyd for many useful discussions.

REFERENCES

- 1. P. ERDÖS AND A. R. REDDY, Rational approximation, Advances in Math. 21 (1976), 78-109.
- A. A. GONČAR, Estimates of the growth of rational functions and some of their applications, Mat. Sb. 72, No. 114 (1967), 489-503; Math. USSR-Sb. 1 (1967), 445-456.
- 3. G. FREUD, D. J. NEWMAN, AND A. R. REDDY, Rational approximation to $e^{-|e|}$ on the whole real line, *Quart. J. Math. Oxford Ser.* 28 (1977), 117-123.