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INTRODUCTION

This paper will exhibit positive, non-decreasing, infinitely differentiable
functions f with the property that the best rational approximations of
degree n in the supremum norm to Ilf on [0, 00) tend to zero arbitrarily
slowly. Furthermore, such f can be chosen to have very general growth
characteristics at infinity.

In particular, this demonstrates that the following two conjectures of
Erdos and Reddy [1] are false.

1. Letf(x) be any nonvanishing, infinitely differentiable and monotonic
function tending to + 00. Then for infinitely many n

inf 111If(x) - 1Ip(x) I1[0,(0) ~ 1110g n,
pEPn

where Pn denotes the set of polynomials of degree at most n.

2. Letf(x) be any nonvanishing, infinitely differentiable and monotonic
function tending to +00. Then, there exist polynomials of the form

Ie

Q(x) = I aiXn ;
i~O

with no = 0, no < n1 < n2 < ''', L~~o l/ni = 00, for which, for infinitely
many k,

II Ilf(x) - I/Q(x)II[o,oo) ::;; ljlog log nk .

THE CONSTRUCTION

We shall make use of the following Lemma due to Goncar [2]. Let Rn

denote the set of rational functions which are the quotients of two poly
nomials each of degree at most n.
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LEMMA. Ifg is a continuousfunction on [a - 1, a + 1],g == °on [a - 1, a]
and g is nondecreasing on [a, a + 1], then

. g(a + h)
mf II g - r II[a-1.a+1] ?'o sup 1 + (2 /1 l/h)'
rERn O<h<l exp 7T n n

THEOREM. Let an be any sequence of positive numbers tending to zero
monotonically. Let Sn be any sequence ofpositive numbers with Sn+1 ?'o Sn + 1.
Then there exists an f satisfying:

(1) f is infinitely differentiable and nondecreasing on [0, (0).

(2) f(2k) = Skfor k = 1,2,....

(3) infreRn 1I11f(x) - r(x)II[G.oo) ?'o anfor all sufficiently large n.

Proof (a) Let On be any sequence of positive numbers with 1 ~ On .
Let hen) = e-6n• Define f on [0, (0) by:

f(x) = Sl'

f(x) = Sk+1'

f(x) = Qk(X),

X E [0,2]

x E [2k + h(k), 2k + 2], k = 1,2,...

x E [2k, 2k + h(k)], k = 1, 2,...

where Qk is any increasing, infinitely deffrentiable function on [2k, 2k + h(k)]
which satisfies Qi2k) = Sk, Qk(2k + h(k)) = Sk+1 and for n?'o 1,
Q~n)(2k) = Q~n)(2k + h(k)) = 0.

Parts (1) and (2) now follow from the construction. We show that, for
suitably chosen On , (3) holds.

(b) The Lemma applied tof - Sk on [2k - 1, 2k + 1] with h = h(k)
yields

inf Ilf - r 11[0.2k+2] ?'o inf jlf - r 11[2k-1.2k+1]
rERn rERn

(c) If Ok ?'o n then infreRn 111/1 - l/r 1I[0,2k+2] ?'o T(k), where T(k) =

1/3(1 + e,,2)(Sk+l)2.
Suppose on the contrary that there exists r E Rn with Ill/f - l/r 11[0.2k+2] <

T(k) (*). Then II r 11[0.2k+2] - II r 11[0,21<+2] Ilfll[0.2k+2] T(k) ~ Ilfll[0.2k+2] and so

II II s: IIIllro.2k+2] s: 211I11
r [0.2k+2] '" 1 _ IIIII[0.2k+2] T(k) ---.0:0 [0,2k+2] ,
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since Ilfl![0.2k+2] = Sk+l • Thus, using (b) with Dk ? n, we have

II 11./1' - l/r 11[0.2k+2]? II f - r 1![0.2k+2] ::? 1 I T(k)
:J Ilfll II II ?' (1 + e rr2

) 2(Sk'+1)2 > ,[0.2k+2] r [0.2k+2]

which contradicts (*) and proves (c).

(d) Let Hk = {i: T(k) ? (Xi > T(k + I)}. Pick Dk = max Hk (= 1 if
H k is empty). Then, for sufficiently large n, n E H k for some k and by (c)

inf Ill/f - r 11[0,00) ? T(k) ? (Xn '
rER n

Remarks. (1) A similar theorem is easily proved for strictly monotone
f(x) by consideringf(x) + x.

(2) Freud, et al. [3] have shown that r m-
1

/
2

can be approximated on
[0, (0) by reciprocals of polynomials of degree n with an error of order
(log n)Jn.
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